Action and Reaction

Newton's third	law of motion states:		
In other words:			
Some examples	s of this law include:		
Action			
Reaction			
Result			
Newton's third	law can be used to describ	e how a swimmer move	es through the
water. With ea	ch stroke, the swimmer's a	ırm	
on the	The water		_ on the
	with an	force in the	
direction. The	swimmer moves forward b	ecause the	force acts
on the	; the	force acts on	the

The swim	mer, having		than the
pool full of water,		than the	water.
An important point to keep in mind v	when dealing	with Newton's third	law is that
action-reaction forces always act on		objec	ts. So, even
though the forces may be	, they	are not	·
In the case of the swimmer, water		her	,
overcoming the	(or) she encounter	rs. Thus, a
net force, or	force, ac	ets on the swimmer, a	nd a
	can take	place.	
<u>Momentum</u>			
If a toy truck rolls toward you, you c	an easily sto	p it with your hand.	However,
you probably would not fare very we	ell if it were a	a full-size semi, even	if it were
moving at the same speed as the toy	truck. It tak	es more	_ to stop a
semi because it has more	1	han the toy truck.	
is a prop	erty a		has
because of its and		Momentum car	be
calculated with the equation below, i	n which	represents momen	itum.
=_			
The unit for mon	nentum is	·	
A large boulder and a small boulder	may be care	ening down a mounta	in at the
same velocity, but the	-	_	
has mass. A sp			

because it has velocity, even if it has a mass. A
bumbling elephant may have low, but because of its
mass, it has a momentum.
Conserving Total Momentum
The momentum of an object doesn't change unless its, or
, or change. But momentums can be
from one object to another. Think about a game of
pool. Before the game starts, all of the balls are motionless. Therefore, the total
momentum of the balls is There can be
because of the balls has a
Think about what happens when a cue ball rolls across the pool table and hits the
group of balls that are standing still. At first, the rolling ball has
, and the motionless balls
When the cue ball collides with the balls that were at rest, all of the balls begin
They momentum. The cue ball
and momentum. If you were to measure the total
momentum of all the balls before and after the collision, it would be the
isisis
to the momentum that the cue ball Total momentum is
The law of conservation of momentum states: